This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

PENTAALKYL-6-DIPHENYLPHOSPHINO-2,3,4,5-TETRACARBA-*NIDO*-HEXABORANES(6)

Bernd Wrackmeyer^a; Alexandra Glöckle^a; Gerald Kehr^a ^a Anorganische Chemie II Universität Bayreuth, Bayreuth, Germany

To cite this Article Wrackmeyer, Bernd , Glöckle, Alexandra and Kehr, Gerald(1997) 'PENTAALKYL-6-DIPHENYLPHOSPHINO-2,3,4,5-TETRACARBA-NIDO-HEXABORANES(6)', Phosphorus, Sulfur, and Silicon and the Related Elements, 131: 1, 25 - 35

To link to this Article: DOI: 10.1080/10426509708031593 URL: http://dx.doi.org/10.1080/10426509708031593

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PENTAALKYL-6-DIPHENYLPHOSPHINO-2,3,4,5-TETRACARBA-*NIDO*-HEXABORANES(6)

BERND WRACKMEYER*, ALEXANDRA GLÖCKLE and GERALD KEHR

Anorganische Chemie II Universität Bayreuth, D-95440 Bayreuth, Germany

(Received 14 May 1997)

Pentaalkyl-6-bromo-2,3,4,5-tetracarba-nido-hexaboranes(6) (3-carb-Br and 4-carb-Br) react with lithium-diphenylphosphide to give the 6-diphenylphosphino substituted carboranes 3-carb-PPh₂ and 4-carb-PPh₂. 3-carb-PPh₂ can be oxidized to give the respective oxide, sulfide and selenide. Treatment of 4-carb-PPh₂ with an excess of methyl iodide cleaves the P-B bond and 4-carb-I is formed together with [Me₂Ph₂P]⁺I. 4-carb-PPh₂ reacts with borane in tetrahydrofuran (BH₃-THF/THF) or W(CO)₅-THF/THF to give the BH₃ and W(CO)₅ complexes. All products were characterized by ¹H, ¹¹B, ¹³C and ³¹P NMR spectroscopy.

Keywords: Boron; Phosphorus; Carborane; NMR

INTRODUCTION

Peralkylated 2,3,4,5-tetracarba-*nido*-hexaboranes(6) **1** and **2** have been known since the mid-sixties^[1] and were found to be exceptionally stable compounds, in contrast to the parent derivative $C_4B_2H_6^{[2]}$. In order to study the chemistry of the carboranes **1** and **2**, functional groups other than alkyl at one or both boron atoms are needed. Recently, we have reported on the synthesis of tetraalkyl-1,6-dibromo-^[3] and pentaalkyl-6-bromo-derivatives **3**-carb-Br and **4**-carb-Br^[4], and the basic structure of such alkylated carboranes has been determined by an X-ray diffraction analysis of the pentamethyl derivative with an N-bonded $Fe_2(CO)_6-\mu$ -SN fragment in 6-position^[5]. The 6-bromo-derivatives **3** and **4** have already served for the synthesis of novel tin-boron compounds such as carb-SnPh₃ and carb-SnCl₃^[6]. Here we report that the pentaalkylcarboranyl moiety

^{*}Corresponding author.

can be linked to phosphorus as shown for the Ph₂P derivatives 3-carb-PPh₂ and 4-carb-PPh₂. A few reactions typical of phosphanes are studied.

RESULTS AND DISCUSSION

Synthesis

The reaction of 3-carb-Br and the isomers 4-carb-Br with Ph₂PLi proceeds readily to give the new phosphines 3-carb-PPh₂ and 4-carb-PPh₂ in high yield (Scheme 1). There was no indication of cluster degradation or of any rearrangement of the 6-substituted isomers to the 1-substituted isomers. This is in agree-

3-carb-P(O)Ph₂

Me
$$+ 3\text{-CI-C}_{6}H_{4}\text{-C(O)O}_{2}H$$

$$+ 1/8 S_{8}$$

$$- 3\text{-carb-P(S)Ph}_{2}$$

$$- 3\text{-carb-P(Se)Ph}_{2}$$

$$- 3\text{-carb-P(Se)Ph}_{2}$$

ment with previous findings for the reaction of carb-Br with organo-[7] or stannyl lithium compounds^[6].

The new phosphane 3-carb-PPh₂ shows the expected typical behavior in the reactions summarized in Scheme 2. Further reactions were carried out with 4-carb-PPh₂ on a small scale in NMR tubes in order to explore the reactivity towards methyl iodide, BH₃-THF/THF and W(CO)₅-THF/THF (Scheme 3). In the case of the latter two reactions, the carboranyl group does not exert any particular effect. However, in the reaction with methyl iodide, the P-B bond is cleaved giving rise to the formation of the 6-iodo derivatives 4-carb-I and $[Me_2Ph_2]^+I$. This indicates that a systematic study is necessary in order to com-

TABLE I 11B, 13C and 31P NMR data[a] of 6-diphenylphosphino- and 6-diphenyl-phosphoryl-pen	1-
tamethyl-2,3,4,5-tetracarba-nido-hexaboranes 3-carb-PPh2, and 3-carb-P(O)Ph2, 3-carb-P(S)Ph2, 3	
carb-P(Se)Ph ₂ , ^[b]	

		3-carb-PPh ₂	3-carb- P(O)Ph ₂	3-carb-P(S)Ph ₂	3-carb- P(Se)Ph ₂
$\delta^{11}B$	B(1)	-43.7	-42.9	-42.6	-42.4
	B(6)	14.0	8.9	11.1	10.9
$\delta^{31}P$	$[{}^{1}J({}^{31}P^{11}B)]$	-59.9[80]	34.8[215]	14.4[200]	-4.5[190]
δ ¹³ C	B(1)-Me	-17.3(80)	- 17.5 (80)	- 17.7 (80)	-17.8(80)
	C(2/5)	100.0[br][11.0 ^[c]]	100.3[br]	100.5[br][15.0 ^[c]]	100.2[br]
	C(3/4)	110.2[4.4]	111.9[13.0]	110.6[12.5]	110.6[12.0]
	C(2/5)-Me	11.0[4.9]	10.9[< 1]	10.8[< 1]	10.8[<1]
	C(3/4)-Me	9.4[< 1]	9.0[< 1]	9.1[< 1]	9.0[< 1]
	PPh ₂ , C	140.2[10.4]	138.7[97.3]	137.4[64.0]	135.0[58.0]
	C _o	134.8[17.4]	131.6[10.2]	131.8 [10.0]	132.5 [10.9]
	C _m	128.5 [7.1]	128.6 [13.4]	128.4 [11.2]	128.4 [10.9]
	C _P	128.3 [< 1]	130.4 [< 1]	130.2 [3.0]	130.2 [2.7]

[[]a] In C_6D_6 at 25 \pm 1 °C; coupling constants $^1J(^{31}P,^{11}B)$ (\pm 10 Hz) and $J(^{31}P,^{13}C)$ (\pm 0.8 Hz) are given in square brackets, $^1J(^{13}C,^{11}B)$ (\pm 5 Hz) in parentheses; [br] indicates the broad signal of a boron-bonded carbon atom owing to unresolved scalar $^{13}C^{-11}B$ coupling

pare the behavior of 3-carb-PPh₂ or 4-carb-PPh₂ with Ph₃P or Ph₂(R)P in general.

NMR Spectroscopic Results

¹¹B, ¹³C, ³¹P and ⁷⁷Se NMR data of the carborane derivatives are given in Table I and Table II (see Experimental for ¹H NMR data). The NMR data are fully consistent with the proposed structures. The relatively sharp ¹¹B NMR signals at ca. $\delta - 42 \pm 1$ are typical of an apical B(1)-alkyl group^[8]. The δ^{11} B(6) values change slightly for different substituents, and the ¹¹B nuclei become more deshielded by the phosphino than by the various phosphoryl substituents. This is the same trend as for the ¹³C_i resonance signals. ¹¹B- and ³¹P NMR spectra serve as excellent tools for monitoring the progress of the reaction and determining the product distribution. As an example, Figure 2 shows that the formation of 4-carb-P(BH₃)Ph₂ is readily evident from the ¹¹B NMR spectra, and that both P-B bonds in this borane adduct are kinetically stable in the presence of a large excess of BH₃-THF. In the ³¹P NMR spectra the formation of the P-B bond is indicated either by a broad singulet (3-carb-PPh₂ and 4-carb-PPh₂) or a partially relaxed quartet [¹J(³¹P, ¹¹B) is given by the difference between the frequencies of the inner lines] owing to scalar relaxation of the second kind^[9].

The ¹³C NMR spectra show all the required signals, together with the typical pattern of the *nido*-C₄B₂ cage^[8]: broad (partially relaxed scalar ¹³C-¹¹B coup-

[[]b] ⁷⁷Se NMR: δ^{77} Se = -334.0; ¹J(⁷⁷Se, ³¹P) = 667.0 ± 3 Hz

[[]c] From heteronuclear ¹³C{¹H, ¹¹B} triple resonance experiments.

¹¹B, ¹³C, and ³¹P NMR-data^[a] of 4-carb-PPh₂ and complexes with BH₃ and W(CO)₅ TABLE II

		ama transfer to the second	the state of the s	(/20)
		4-carb-PPh ₂	4-carb-P[W(CO) ₅]Ph ₂	4-carb-P(BH ₃)Ph ₂
8 ¹¹ B	B(1)	44.0	-43.6	-43.9
	B(6)	14.3	14.7	$10.7^{[b]}$
8 ³¹ P		-59.6	-40.7/-42.7 (ratio 2:1 ^[d])	-24.2 [180]
$S^{13}C$	B(1)-Et	-4.4 [br] (86); 11.7	-3.9 [br]; 10.1	-4.8[br]; 10.2
	C(2/2')	99.7[br][10.9 ^[c]]; 99.4 [br][10.9 ^[c]]	97.9 [br]; 97.9 [br]	100.7 [br]; 100.7 [br]
	C(5/5')	99.4[br][10.9 ^[c]]; 106.3 [br] [10.9 ^[c]]	97.9 [br]; 103.7 [br]	100.7 [br]; 104.3 [br]
	C(3/3')	114.9 [3.8]; 114.9 [3.8]	116.2 [8.0]; 116.2 [8.0]	116.3 [9.0]; 116.3 [8.7]
	C(4/4')	114.4[3.8]; 109.2 [3.8]	115.3 [8.0]; 109.8 [8.0]	115.6 [8.7]; 110.5 [8.7]
	C(2)-Me	11.8 [3.8]	11.5	10.8
	C(2')-Me	11.8 [3.8]	11.5	10.8
	C(3)-Et	19.3 [4.9]; 15.1	18.7 [8.8]; 14.2	19.0[14.2
	C(3'-Et	17.8 [6.0]; 13.7	17.7; 13.6	17.7 [8.5]; 13.8
	C(4)-Et	19.3 [4.9]; 15.1	18.7 [8.8]; 14.2	19.0; 14.7
	C(4')-Me	0.6	9.3	9.1
	C(5)-Me	11.8 [3.8]	11.5	10.8
	C(5')-Et	17.8 [6.0]; 12.9	17.7; 12.8	17.7 [8.5]; 12.9
	PPh ₂ C _i	139.9[9.8]; 139.8[9.8];	137.2[37.5];137.1[37.5];137.0[36.9]	133.3[47.3];133.3[47.2];133.5[47.6]
	౮	135.5[16.3]; 135.2[16.3];134.9[17.4];	134.8[11.2];134.2[11.0];134.1[11.2]	134.1[8.7];133.9[8.2];133.8[8.7]
	ٿ	128.5[9.0];127.3[9.3];127.1[10.3];	128.6[9.7];128.5[9.7];128.4[9.7]	128.5[9.8];128.4[9.3]
	౮	128.4 [2.2–3.2]	129.3[2.1];129.2[2.1];129.1[2.1]	129.9[3];129.8[3]

[a] In C_0D_0 at 25 \pm 1 °C; coupling constants ${}^1J({}^2IP_1^{-1}B)$ (\pm 10 Hz) and ${}^1J({}^3IP_1^{-1}C)$ (\pm 0.8 Hz) are given in square brackets, ${}^1J({}^1C_1^{-1}B)$ (\pm 5 Hz) in parentheses; [br] indicates the broad signal of a boron-bonded carbon atom owing to unresolved scalar ${}^{13}C_{-1}B$ coupling; n.m. means not measured owing to

insufficient signal-to-noise ratio.

[b]: $\delta^{11}B$ (carb-P-BH₃) – 39.9, broad, ${}^{1}f({}^{31}P_{1}^{11}B)$ and ${}^{1}f({}^{11}B, {}^{1}H)$ are not resolved.

[c] From selective heteronuclear ${}^{13}C({}^{1}H, {}^{11}B)$ triple resonance experiments.

[d] $\delta^{13}C(CO_{cis}) = 198.8$ [6.3] { ${}^{1}f^{183}W, {}^{13}C) = 126$ Hz}; 198.9 [6.1] {126} (ratio 2:1); $\delta^{13}C(CO_{trans}) = 200.3[16.9]\{n.m.\}; 200.4[16.9]\{n.m.\}$. (ratio 2:1).

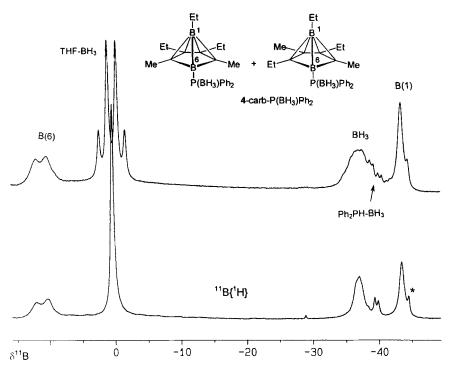


FIGURE 1 80.3 MHz ¹¹B NMR spectra (with and without ¹H decoupling) of the reaction solution containing 4-carb-P(BH₃)Ph₂ in the presence of a large excess of THF-BH₃. The sample also contains a small amount of Ph₂PH-BH₃ which arises from traces of Ph₂PH present in 4-carb-PPh₂.

ling^[8,10] ¹³C NMR signals for the C(2,5)- and sharp signals for the C(3,4) atoms as doublets owing to ${}^3J({}^{31}P, {}^{13}C(3,4))$. By selective heteronuclear ${}^{13}C\{{}^{1}H, {}^{11}B\}$ triple resonance experiments, the broad ${}^{13}C(2,5)$ NMR signals become sharp doublets owing to ${}^2J({}^{31}P, {}^{13}C(2,5))$ (Figure 2).

The comparison of ${}^{1}J({}^{31}P, {}^{13}C)$ and ${}^{1}J({}^{31}P, {}^{11}B)$ values for Ph₃P and derivatives with those for 3-carb-PPh₂ and derivatives (Table III) suggests that rehybridization^[11] at the phosphorus atom in the P(V) compounds is induced by the 6-carboranyl group. The large magnitude of the coupling constants ${}^{1}J({}^{31}P, {}^{11}B)$ indicates increased s character of the P-B hybrid orbital, whereas the smaller magnitude of ${}^{1}J({}^{31}P, {}^{13}C)$ in 3-carb-P(E)Ph₂ (E = O, S, Se) as compared with P(E)Ph₃ indicates reduced s character in the P-C hybrid orbitals. The $\delta^{31}P$ values in Table III also show the markedly different substituent effects exerted by the 6-carboranyl and phenyl groups.

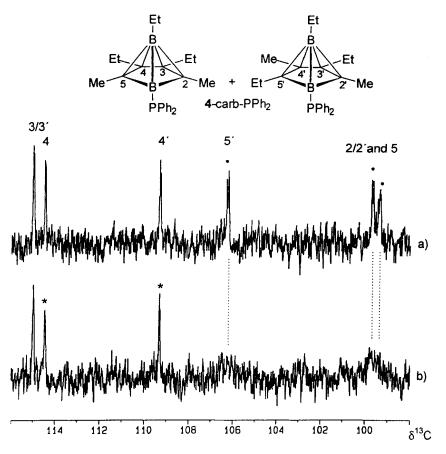


FIGURE 2 125.75 MHz 13 C NMR spectra of the isomers 4-carb-PPh₂ showing the carboranecage 13 C resonances a) Heteronuclear 13 C{ 1 H, 11 B(6)} triple resonance experiment showing C(2/2' to 5/5'), with resolved splitting owing to 2 J(31 P, 13 C) and 3 J(31 P, 13 C) as marked (*). 13 C(2/2') and 13 C(5/5') resonances are broad due to partially relaxed scalar 13 C- 11 B coupling. b) Normal 13 C(11 H) NMR spectrum showing the same region as in a). The 13 C(2/2') and 13 C(5/5') resonances are now typically broad due to partially relaxed scalar 13 C- 11 B coupling.

CONCLUSIONS

The first 2,3,4,5-tetracarba-nido-hexaborane(6) derivatives with a phosphino group in 6-position were prepared, and characterized by multinuclear magnetic resonance. Oxidation of these compounds leads to the first boron compounds in which boron is linked to phosphorus in the formal +5 oxidation state. Although the P-B bond is cleaved by the attempt to prepare a methyl phosphonium iodide, the P-B bond is stable in the presence of an excess of borane, and therefore, the new phosphanes may become interesting ligands in coordination chemistry.

	δ ³¹ P	$^{1}J(^{31}P,^{13}C_{i})$	$^{1}J(^{31}P,^{13}C_{i})$	$^{I}J(^{3I}P,^{II}B)$	$\delta^{3}P$	
PPh ₃	-6.0	- 12.5 ^[a]	(-)10.0	(+)80	- 59.9	3-carb-PPh ₂
P(O)Ph ₃	+ 29.3	+ 104.4 ^[b]	(+)94.3	(+)215	+ 34.8	3-carb- P(O)Ph ₂
P(S)Ph ₃	+43.2	(+)88.5 ^[c]	(+)67.0	(+)200	+ 14.4	3-carb- P(S)Ph ₂
P(Se)Ph ₃	+ 34.1	$(+)75.8^{(d)}$	(+)58.0	(+)190	-4.5	3-carb- P(Se)PPh ₂

TABLE III Comparison of $\delta^{31}P$ values and coupling constants ${}^{1}J({}^{31}P, {}^{13}C)$ and ${}^{1}J({}^{31}P, {}^{11}B)$ (proposed as are given in parentheses) for Ph₂P and 3-carb-PPh₂ derivatives

EXPERIMENTAL

All reactions were carried out in an inert atmosphere of Ar or N₂, using carefully dried solvents, oven-dried glassware, and generally observing all necessary precautions to exclude moisture and oxygen. 6-Ethyl-pentamethyl-2,3,4,5-tetra-(1) and a 2:1 mixture of the carba-nido-hexaborane(6) 2,4-dimethyl-1,3,5-triethyl- and 2,5-dimethyl-1,3,4-triethyl-2,3,4,5-tetracarbanido-hexaboranes(6) (2)[1] served as starting materials. These were converted into the bromides 3-carb-Br and 4-carb-Br^[4]. Suspensions of LiPPh₂ in hexane were prepared in the usual way from diphenylphosphane and ⁿBuLi (1.6 M in hexane).

¹H, ¹¹B, ¹³C, ³¹P, ⁷⁷Se NMR spectra were recorded by using Bruker AC 300, ARX 250, and DRX 500 instruments equipped with multinuclear probe heads (ca. 10-20% in C_6D_6 at 25 \pm 1°C in 5mm o.d. tubes, if not mentioned otherwise). Heteronuclear ¹³C{¹H, ¹¹B} triple resonance experiments were carried out using the Bruker DRX 500 spectrometer equipped with three independent frequency channels. Chemical shifts are given with respect to Me₄Si) [δ¹H 7.15 (C_6D_5H) ; 7.24 $(CHCl_3/CDCl_3)$, $\delta^{13}C$ 128.0 (C_6D_6) ; 77.0 $(CDCl_3)$], external Et₂O-BF₃ [δ^{11} B = 0 for $\Xi^{(11)}$ B) = 32.083971 MHz], external H₃PO₄ (85%, aq.) $[\delta^{31}P = 0 \text{ for } \Xi^{(31}P) = 40.480747 \text{ MHz}]$, and external neat Me₂Se $[\delta^{77}Se$ = 0 for Ξ (77Se) = 19.071523 MHz].-IR spectra were recorded by using a Perkin-Elmer 983G spectrometer.

6-Diphenylphosphino-1,2,3,4,5-pentamethyl-2,3,4,5-tetracarba-nido-hexaborane(6) 3-carb-PPh₂

3-carb-Br (1.3 g; 0.94 ml; 5.8 mmol) was added to a suspension of LiPPh₂ (5.8 mmol) in 50ml of hexane. The reaction mixture was heated for 12 h at 60°C. Then insoluble material was filtered off and the solvent was removed in vacuo.

 [[]a] H. J. Jakobsen, T. Lund, and S. Sorensen, J. Magn. Reson. 33, 477 (1977).
 [b] B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, New York 1981.

[[]c] S. D. Postle, Phosphorus, Sulfur, 3, 269 (1977).

[[]d] This work.

Fractional distillation gave a 1.88 g of 3-carb-PPh₂ as a colorless oil (b.p. 50° C/ 10^{-4} Torr; yield 87%). ¹H-NMR: δ^{1} H -0.64 br (s, 3H, B(1)-Me); 1.38 (s, 6H, C(2/5)-Me); 1.42 (s, 6H, C(3/4)-Me), 7.0 to 7.8 (m, 10H, -PPh₂).

6-Diphenylphosphinyl-2,4-dimethyl-1,3,5-triethyl- und 2,5-dimethyl-1,3,4-triethyl-2,3,4,5-tetracarba-nido-hexaborane(6) 4-carb-PPh₂

The mixture of isomers 4-carb-Br (0.91ml; 4.4 mmol) was added to a suspension of LiPPh₂ (4.4 mmol) in 30 ml of hexane at -78° C. After 15 minutes the reaction mixture was allowed to warm to room temperature and was heated for 5 h at 60°C. Insoluble material was filtered off, and the solvent was removed in vacuo. Distillation of the yellow residue gave 1.39 g of 4-carb-PPh₂ as a colorless oil (b.p. 55°C/10⁻⁴ Torr; yield 85%).-¹H-NMR: δ ¹H 0.19 br (q), 0.72 br (t) (15H, B(1)-Et); 1.50 (s, 12H, C(2/2'/5)-Me); 1.97 bis 2.16 (m), 0.94 (t), (10H, C(3/4)-Et); 1.90 bis 1.99 (m), 0.91 (t), (10H, C(3')-Et); 1.90 bis 2.00 (m), 0.89 (t), (10H, C(5')-Et); 1.56 (s, 6H, C(4')-Me); 6.9 bis 8.05 (m, 30H, -PPh₂).

6-Diphenylphosphoryl-1,2,3,4,5-pentamethyl-2,3,4,5-tetracarba-nido-hexaborane(6) 3-carb-P(O)Ph₂

A solution of 3-chloroperbenzoic acid (0.25g; 0.08 mmol) in 10ml of THF was added to a solution of 3-carb-PPh₂ (0.03g; 0.08 mmol) in 20ml of THF at room temperature. After the reaction mixture was stirred for 3 h, the solvent was removed in vacuo. 3-carb-P(S)Ph₂ was obtained as a white waxy solid (0.03g; 90%; mp. 150–157°C). 1 H-NMR: δ^{1} H -0.50 br (s, 3H, B(1)-Me); 1.21 (s, 6H, C(2/5-Me); 1.49 (s, 6H, C(3/4)-Me), 6.90 to 8.18 (m, 10H, -PPh₂).

6-Diphenylthiophosphoryl-1,2,3,4,5-pentamethyl-2,3,4,5-tetracarba-nidohexaborane (6) 3-carb-P(S)Ph $_2$

Sulfur (0.15 g; 0.6 mmol) dissolved in 5ml of THF was added to a solution of 3-carb-PPh₂ (0.14g; 0.6 mmol) in 20ml of THF. After stirring the reaction mixture for 12 h and removing the solvent in vacuo, 0.23 g of 3-carb-P(S)Ph₂ as a yellowish solid was obtained. (90%; m.p. $162-170^{\circ}$ C). ¹-NMR: δ^{1} H -0.36 br (s, 3H, B(1)-Me); 1.32 (s, 6H, C(2/5)-Me); 1.40 (s, 6H, C(3/4-)Me), 7.00 to 8.35 (m, 10H, -PPh₂.

6-Diphenylselenophosphoryl-1,2,3,4,5-pentamethyl-2,3,4,5-tetracarbanidohexaborane(6) 3-carb-P(Se)Ph₂

A suspension of an excess of selenium (2.8 g; 0.81 mmol) in 5ml of ThF was added to a solution of 3-carb-PPh₂ (0.11g; 0.285 mmol) in 20ml of THF. The reaction mixture was stirred for 12 h and then the excess of selenium was filtered off. The solvent was removed in vacuo and 3-carb-P(Se)Ph₂ was obtained as a dark solid (0.12g; >90%; m.p. > 100°C, decomp.). ¹H-NMR; δ ¹H -0.34 br (s, 3H, B(1)-Me); 1.31 (s, 6H, C(2/5)-Me); 1.40 (s, 6H, C(3/4)-Me), 6.95 to 8.45 (m, 10H, -PPh₂).

Reaction of 4-carb-PPh2 with methyl iodide

A tenfold excess of methyl iodide was added to a solution of 0.05 g (0.13 mmol) of 4-carb-PPh₂ in 0.5 mL of C_6D_6 . The ¹¹B NMR spectrum showed the formation of the isomers 4-carb-I [$\delta^{11}B(1)$ 5.9, $\delta^{-11}B(6)$ $-42.8^{[4]}$].

Reaction of 4-carb-PPh2 with W(CO)5-THF/THF

A THF solution (50 mL) of 0.5 mmol of W(CO)₅-THF was prepared in the usual way by UV irradiation of W(CO)₆ in THF (1.5 h), and 0.192 G of 4-carb-PPh₂ was added. After stirring for 24 h at room temperature most of the THF was removed in vacuo and the residue was dissolved in 1 mL of C_6D_6 (see Table II for NMR data). IR (C_6D_6): 2065 w; 1932 s; 1922 m, sh

Reaction of 4-carb-PPh2 with BH3-THF/THF

A fivefold excess of BH₃-THF/THF was added to a solution of 0.05 g (0.13 mmol) of 4-carb-PPh₂ in 0.5 mL of C_6D_6 . The ¹¹B NMR spectra (Figure 1)) showed the formation of the borane adduct 4-carb-P(BH₃)Ph₂, together with a small amount of Ph₂PH-BH₃ [δ ¹¹B = -39.9, ¹J(¹¹, ¹H) = 105 Hz; δ ³¹P = 2.5, ¹J(³¹P, ¹¹B) = 53 Hz; δ ¹H(PH) = 5.75, ¹J(³¹P, ¹H) = 376 Hz, ³J(¹HPB ¹H) = 7.3 Hz; the NMR data differ from those given Ref 12] which arises from a small amount of Ph₂PH present in the starting material.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

References

- a) P. Binger, Tetrahedron Lett. 24, 2675 (1996). -b) P. Binger, Angew. Chem. 80, 288 (1968);
 Angew. Chem. Int. Ed. Engl. 7, 286 (1968). -c) R. Köster and M. A. Grassberger, Angew. Chem. 79, 197 (1967); Angew. Chem. Int. Ed. Engl. 6, 218 (1967).
- [2] a) T. Onak and G. T. F. Wong, J. Am. Chem. Soc. 92, 5228 (1970). -b) V. R. Miller and R. N. Grimes, Inorg. Chem. 11, 862 (1972).
- [3] B. Wrackmeyer and G. Kehr, J. Organomet. Chem. 501, 87 (1995).
- [4] B. Wrackmeyer and A. Glöckle, Z. Naturforsch. 51b, 859 (1996).
- [5] M. Herberhold, U. Bertholdt, W. Milius, A. Glöckle and B. Wrackmeyer, J. Chem. Soc. Chem. Commun. 1986, 1296.
- [6] B. Wrackmeyer and A. Glöckle, Main Group Met. Chem. 20, 181 (1997).
- [7] B. Wrackmeyer, G. Kehr and A. Glöckle, unpublished results.
- [8] B. Wrackmeyer, Z. Naturforsch. 37b, 412 (1982).
- [9] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London 1961, pp. 264-353
- [10] a) B. Wrackmeyer and R. Köster, in R. Köster (ed.) Houben-Weyl, Methoden der Organischen Chemie, Vol XIII/3c, Thieme, Stuggart, 1984, pp. 377-611. -b) B. Wrackmeyer, (1979) Progr. NMR Spectrosc. 12, 227 (1979).
- [11] H. A. Bent, Chem. Rev. 61, 275 (1961).
- [12] B. Rapp and J. E. Drake, Inorg. Chem. 12, 2868 (1973).